

NeuroHDF documentation

Neuroscientists need to manage and integrate data from anatomy, physiology, behavior and simulation data
on multiple spatial and temporal scales and across modalities, individuals and species. Large amounts of data with
complex data types are to be produced in the coming decades - and viable solutions for databasing, data sharing and
interoperability of software tools are needed [http://incf.org/programs].

“Hierarchical Data Format (HDF5) [http://www.hdfgroup.org/HDF5/] is a data model, library, and file format for storing and managing data.
It supports an unlimited variety of datatypes, and is designed for flexible and efficient I/O and for high volume and complex data.”

NeuroHDF is an effort to combine the flexibility and efficiency of HDF5 for
neuroscience datasets through the specification of a simple layout for different
data types with minimal Metadata. The NeuroHDF Interest Group consists
of the members of this group [https://groups.google.com/forum/#!forum/neurohdf-interest-group].

	Multi-compartment neural circuitry

	N-dimensional, homogeneous arrays

	Multiscale image datasets

	Physiology

	Surfaces

	Behavioral datasets

	Simulation

	Serial section 2D images

	Evaluation of HDF5

	Further reading

Multi-compartment neural circuitry

The SWC format became the quasi-standard for the description of single neuronal
cell morphology reconstructions. For the description of larger neural circuits
with many neurons and their synaptic connectivity, a new and efficient data format
is needed. NeuroHDF describes a multi-compartmental neural circuit, similar to
SWC, with points in 3D space (vertices) and their connectivity. Attributes
like vertex (skeleton node, connector, root) or edge (presynaptic_to, postsynaptic_to)
type or radius are expressed as arrays corresponding to the vertices or edges.

You can use Hdfview to inspect an example NeuroHDF file [https://github.com/NeuralEnsemble/libNeuroML/blob/master/hdf5Examples/neurohdf_microcircuit.hdf]. The software
tool CATMAID for neural circuit reconstruction exports microcircuits in this
format. Another emerging standard is libNeuroML [https://github.com/NeuralEnsemble/libNeuroML].

Useful for neuroscience data types

	Single cell morphology

	Neural circuit reconstructions

Tool supporting this specification

	CATMAID [http://catmaid.org/] exports neural circuit reconstructions in NeuroHDF

N-dimensional, homogeneous arrays

By using a simple convention to describe metadata about the array axes,
basic information is available to make sensible interpretation of the array’s
content.

Useful for neuroscience data types

	Electron microscopy: 3D array, 3 spatial dimension after alignment

	Optical microscopy: 4D array, 3 spatial dimension and 1 channel dimension

	Labeling

	Functional MRI/PET: 4D array, with 3 spatial and 1 temporal dimension

	Structural MRI: 3D array, with 3 spatial dimensions

	Diffusion MRI: 4D array, with 3 spatial dimension and 1 dimension for gradient directions
Contain metadata tables for b-values and b-vectors

Tool supporting this specification

None so far. A zebra fish dataset [http://vibez.informatik.uni-freiburg.de/] available
as HDF5 files uses a similar specification for axes units.

Example generation

Multiscale image datasets

As an extension to generic N-dimensional, homogeneous arrays representation,
addition of subgroups for different scales can represent multiple (spatial)
scales.

Useful for neuroscience data types

	Multi-scale electron microscopy

Tool supporting this specification

None so far.

Example generation

Physiology

<Text and example dataset>

Useful for neuroscience data types

	Extracellular recordings

	Intracellular recordings

	Calcium imaging

	EEG

	MEG

	NIRS

Tool supporting this specification

None so far.

Example generation

Surfaces

A proliferation of file formats exist for 3D surfaces. The most widely used
scheme to store surfaces is as triangular meshes, using vertices (points in 3D)
and faces (usually triangles which describe the connectivity of the vertices).
Additionally, values can be stored either on the vertices or faces. We propose
the same convention to store surfaces in NeuroHDF. Additionally, level-of-detail
meshes can be expressed with an additional group indirection.

Useful for neuroscience data types

	Cortical and subcortical surface-based atlases

	Morphology of neurons or subcellular components

Tool supporting this specification

None so far.

Example generation

Behavioral datasets

	Behavioral experiments of tracked animals moving on a 2D plate
	Irregular spatio-temporal data in a spatial reference system

	Questionnaire results

Simulation

<Text and example dataset>

Useful for neuroscience data types

	Multicompartmental model simulation
- Gaute Einevoll - Key challenges in multiscale modeling of neural tissue [http://www.youtube.com/watch?v=Ikf6EU9kRG8&list=PL181D403527BD5A41&index=8]
- James Kozloski - The Neural Tissue Simulator [http://www.youtube.com/watch?v=XfLzp-W4T8c&list=UU6FYCVath84rVzs99Ecfxyw&index=7&feature=plcp]

Tool supporting this specification

None so far.

Example generation

Serial section 2D images

<Text and example dataset>

Useful for neuroscience data types

	Serial section electron microscopy

Tool supporting this specification

None so far.

Example generation

Evaluation of HDF5

Main HDF Group page
http://www.hdfgroup.org/

Supported Libraries

Python libraries

http://code.google.com/p/h5py/
http://www.pytables.org/moin

Java libraries

http://www.ral.ucar.edu/~steves/nujan.html
https://wiki-bsse.ethz.ch/display/JHDF5

Matlab

http://www.mathworks.com/help/techdoc/ref/hdf5.html

R bindings

https://r-forge.r-project.org/projects/h5r/

.NET

http://www.hdfgroup.org/projects/hdf.net/

Advantages of using HDF5

	Compact binary data storage, extensible metadata

	Fast random and parallel access, efficient, scalable

	Widely used in High Performance Computing

	Open source and cross-platform

	HDF5-Fast Query [http://vis.lbl.gov/Events/SC05/HDF5FastQuery/index.html] and paper [http://www.osti.gov/bridge/purl.cover.jsp?purl=/881620-2uP7So/]

Possible limitations of HDF5

	Difficulty to store variable-length string properties.

	Deleting a dataset does not free the space on disk. Requires rewriting the file.

	Many read/write operations on the same HDF5 file might be limited.

	Delete or update a dataset in HDF5? [http://stackoverflow.com/questions/447854/delete-or-update-a-dataset-in-hdf5]

	Evaluating HDF5: What limitations/features does HDF5 provide for modelling data? [http://stackoverflow.com/questions/547195/evaluating-hdf5-what-limitations-features-does-hdf5-provide-for-modelling-data/547240#547240]

Further reading

Biological image formats

	Unifying biological image formats with HDF5 [http://dl.acm.org/citation.cfm?id=1562781]

	BioHDF [http://www.hdfgroup.org/projects/biohdf/] for next generation sequencing,
The Case for HDF [http://finchtalk.geospiza.com/2008/02/case-for-hdf.html],
Introduction to BioHDF [http://finchtalk.geospiza.com/2009/03/introducing-biohdf.html]

	“Our current estimates are that there are approximately 80 proprietary file formats for optical microscopy alone
(and not including other common imaging techniques) that must be supported by any bioimage informatics tool that
aims to provide a generalizable solution. In short, the lack of standardized access to data makes the generation
of informatics tools quite difficult.” Reference [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789254/]

	Bio-Formats Java Library [http://www.loci.wisc.edu/software/bio-formats]

	A HDF5 I/O plugin for ImageJ [http://lmb.informatik.uni-freiburg.de/resources/opensource/imagej_plugins/hdf5.html]

Neuroimaging formats

	Nibabel: BIAP3 - a JSON nifti header extension [https://github.com/nipy/nibabel/wiki/BIAP3]

	Extending Nifti discussion [http://www.nitrc.org/forum/forum.php?thread_id=2071&forum_id=1942]

	MINC2 [http://en.wikibooks.org/wiki/MINC/Reference/MINC2.0_Users_Guide]

Visualization formats

	Fiber Bundle HDF5 library [http://www.fiberbundle.net/]

	Introduction to HDF5 and F5 [http://sciviz.cct.lsu.edu/projects/vish/introduction_hdf5_f5.pdf]

Microscopy formats and metadata

	Open Microscopy Environment (OME): Metadata matters: access to image data in the real world [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2878938/?tool=pubmed]

Climate and Forecast formats

	NetCDF Climate and Forecast (CF) Metadata Convention [http://cf-pcmdi.llnl.gov/]

General

	HDF5 forum [http://hdf-forum.184993.n3.nabble.com/]

Global object model

	Object Model for Neuroinformatics [http://code.google.com/p/incf-omni/]

	Common Data Model for Neuroscience Data and Data Model Exchange [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC134589/]

Software tools using HDF5

Python

	neo for electrophysiolog [http://neuralensemble.org/trac/neo/browser/branches/neo0.2/neo/io/hdf5io.py?rev=329]

	pandas [http://pandas.sourceforge.net/io.html#hdf5-pytables]

	PyMVPA [http://www.pymvpa.org/generated/mvpa2.base.hdf5.h5save.html]

	larry [https://github.com/kwgoodman/la/blob/master/la/io.py]

	ilastik [http://ilastik.org]

	stimfit [http://code.google.com/p/stimfit/]

Java

	neuroConstruct [http://www.neuroconstruct.org/api-latest/api/ucl/physiol/neuroconstruct/neuroml/hdf5/package-summary.html]

Matlab

	Matlab natively supports HDF5 [http://www.mathworks.ch/help/techdoc/ref/hdf5.html]

Index

Variety of neuroscience dataset types

Anatomy

	Dense reconstruction of neuropile from electron microscopy
	Regular 3D grid segmenting the structures in a spatial reference system

	Sets of area lists representing structures

	Sets of surface meshes representing structures

	Network of brain regions and their connectivity

	Network of neurons and their connectivity (circuit diagram)

	Network of neuron classes and their connection probability (circuit diagram)

Development

	Cell lineages: Cell division, differentiation and migration data in 3D

Genomics/Proteomics

	Gene expression array of genes assayed in a spatial volume
for a particular genotypic state, physiological state, developmental stage,
after perturbation with different set of parameters

	Tractography dataset
- Irregular 3D data in spatial reference system

Cookbook - Spatio-Temporal datasets

This page introduces NeuroHDF convention for the hierarchical layout of spatio-temporal datasets (datasets
with underlying geometry) that are subnodes of a Region. The spatial coordinates are referenced relative
to the coordinate system defined by the region.

Note

For metadata attributes, 0-indexed is the convention (Python convention), different from
1-indexed based conventions (e.g. in Matlab).

Regular datasets

N-dimensional contiguous, homogeneous dataset

A data block with at least one spatial dimension. It may have temporal dimensions. There are usually
additional dimensions (trials, channels, subjects etc.). All information about the axes are stored
as metadata.

Because an affine transformation allows for axes flipping, rotation, or shear operation, which
would invalidate the semantics of the Region space, scaling (i.e. zooms defining the
spatial resolution of the voxels/pixels) and translation are specified seperately.

The spatial axes (kind: spatial) are in correspondence with the ordering of the
elements of the scaling and translation arrays. For instance, dimensions 2,3 and 4
(with index 1,2 and 3) correspond to the first, second and third element of the
scaling and translation array. Similarly, the ordering is in correspondence with the
Region axes, i.e. the first spatial axes of the Region corresponds to the axis with index 1
in our example case.

NeuroHDF node:

Group["My regular dataset"]

 Group["metadata"]
 .attrs["type"] = "XML" (or JSON, ...)
 .attrs["schemaNamespace"] : Schema XML namespace identifier
 .attrs["schemaLocation"] : URL to XSD file
 Dataset["data"] : byte array, shape (N,1) storing the XML document

 Dataset["data"] : nd array
 .attrs["scaling"] : 1d array, shape (3,1) for 3 spatial axes
 .attrs["translation"] : 1d array, shape (3,1) for 3 spatial axes
 .attrs["axes_info"] = {
 0 : {"name" : "t",
 "unit" : {"name": "millisecond", "ref" : "http://purl.obolibrary.org/obo/UO_0000028"},
 "sampling frequency" : 256,
 "kind" : "temporal" },
 1 : {"name" : "x",
 "unit" : {"name": "meter", "ref" : "http://purl.obolibrary.org/obo/UO_0000008"},
 "kind" : "spatial" },
 2 : {"name" : "y",
 "unit" : {"name": "meter", "ref" : "http://purl.obolibrary.org/obo/UO_0000008"},
 "kind" : "spatial" },
 3 : {"name" : "z",
 "unit" : {"name": "meter", "ref" : "http://purl.obolibrary.org/obo/UO_0000008"},
 "kind" : "spatial" },
 4 : {"name" : "r",
 "desc" : "Red channel measurement",
 "vmin" : "0",
 "vmax" : "256" },
 5 : {"name" : "g",
 "desc" : "Green channel measurement"},
 6 : {"name" : "b",
 "desc" : "Blue channel measurement"},
 7 : {"name" : "trial"}
 }

Irregular datasets

3D skeletons / microcircuitry

Examples:

	Cellular morphologies (skeletonized)

	Skeletonized reconstructions from electron microscopy, e.g. with CATMAID [https://github.com/acardona/CATMAID]

NeuroHDF node:

Group["3D Skeletons"]

 Group["vertices"]
 Dataset["data"] : array, shape (N,3) with spatial location
 .attrs["axes_info"] = {
 0 : {"name":"entities"},
 1 : {"name":"spatial location",
 "label": {
 0 : { "name" : "x", "unit" : {"name": "meter", "ref" : "http://purl.obolibrary.org/obo/UO_0000008"} },
 1 : { "name" : "y", "unit" : {"name": "meter", "ref" : "http://purl.obolibrary.org/obo/UO_0000008"} },
 2 : { "name" : "z", "unit" : {"name": "meter", "ref" : "http://purl.obolibrary.org/obo/UO_0000008"} },
 } } }

 Group["properties"]
 Dataset["type"] array, shape (N,1)
 .attrs["value"] = {
 1 : {"name" : "skeleton node"},
 2 : {"name" : "connector node"}
 }

 Group["connectivity"]
 Dataset["data"] array, shape (M,2)
 -> stores the connectivity between vertices in 0-indexed (global topology) array
 .attrs["axes_info"] = {
 0 : {"name":"entities"},
 1 : {"name":"connections",
 "label" : {
 0 : {"name" : "from"},
 1 : {"name" : "to"},
 }
 }
 }
 Group["properties"]
 Dataset["type"] array, shape (M,1)
 .attrs["value"] = {
 1 : {"name" : "axonal arbor"},
 2 : {"name" : "dendritic arbor"},
 3 : {"name" : "cell body"},
 4 : {"name" : "spine"},
 5 : {"name" : "presynaptic to"},
 6 : {"name" : "postsynaptic to"},
 }
 Dataset["id"] array, shape (M,1)

Set of 3D triangular surfaces

NeuroHDF node:

Group["3D Surfaces"]

 Group["vertices"]
 Dataset["data"] : array, shape (N,3) with spatial location
 .attrs["axes_info"] = {
 0 : {"name":"points"},
 1 : {"name":"spatial location",
 "labels": {
 0 : { "name" : "x", "unit" : {"name": "meter", "ref" : "http://purl.obolibrary.org/obo/UO_0000008"} },
 1 : { "name" : "y", "unit" : {"name": "meter", "ref" : "http://purl.obolibrary.org/obo/UO_0000008"} },
 2 : { "name" : "z", "unit" : {"name": "meter", "ref" : "http://purl.obolibrary.org/obo/UO_0000008"} },
 } } }

 Group["properties"]
 Dataset["type"] : array, shape (N,1)
 .attrs["value"] = {
 1 : {"name" : "axonal arbor"},
 2 : {"name" : "dendritic arbor"},
 3 : {"name" : "cell body"}
 }
 Dataset["id"] : array, shape (N,1)

 Group["connectivity"]
 Dataset["data"] : array, shape (M,3)
 -> global topology of triangular faces. find local topology by subtracting min()
 .attrs["axes_info"] = {
 0 : {"name": "entities" },
 1 : {"name": "triangular faces" }
 }
 Group["properties"]
 Dataset["type"] : array, shape (M,1)
 Dataset["id"] : array, shape (M,1)

Cookbook - Generic datasets

A proposal for data structures that are not spatio-temporally mapped, such as networks,
behavioral or simulation results (Variety of neuroscience dataset types for more).

Generic

A generic dataset structure:

NeuroHDF node:

Group["Generic dataset"]

 Group["metadata"]
 .attrs["type"] = "XML" (or JSON, ...)
 .attrs["schemaNamespace"] : Schema XML namespace identifier
 .attrs["schemaLocation"] : URL to XSD file
 Dataset["data"] : byte array, shape (N,1) storing the XML document

 Dataset["data"] : nd array data structure
 or
 Group["data"] : complex data structure

Networks

The basic structure is similar to a static irregular dataset with vertices and connectivity.

NeuroHDF node:

Group["My Network"]

 Group["vertices"]

 Dataset["data"] : array, shape (N,1) for node identifiers

 Group["properties"]:
 Dataset["group"] : array, shape (N,1) to group nodes of the network
 Dataset["color"] : array, shape (N,3) for node color in RGB

 Group["connectivity"]

 Dataset["data"] : array, shape (M,2) stores the connectivity between vertices 0-indexed
 .attrs["axes_info"] = {
 0 : {"name":"connection"},
 1 : {"name":"topology",
 "label" : {
 0 : {"name":"from"},
 1 : {"name":"to"},
 }
 }
 }
 .attrs["metadata"] = {
 "directed" : True
 }

 Group["properties"] :
 Dataset["weight"] > array, shape (M,2) for the connection weigth

Alternatively, if the graph is dense, store the complete connectivity matrix similar to a regular dataset.

NeuroHDF node:

Group["Connection Matrix"]

 Dataset["data"] -> array, shape (N,N) for connectivity matrix
 .attrs["axes_info"] = {
 0 : {"name" : "from region", },
 1 : {"name" : "to region" }
 }

 Group["properties"]
 Dataset["id"] : array, shape (N,1) with node identifiers

Dynamic datasets

Two approaches to extend static datasets to the temporal domain:

	Add another dimension to the dataset array, denoting time

	Add super-node for different time steps where datasets are contained in

Both methods have advantages and disadvantages and fit different scenarios. But
they can also be combined.

When the time evolution does not change the dimensionality of the dataset, add time as another dimension to
the data array. If it does change, introduce scaffolding timepoint group nodes for each time step.
For variably distanced time steps, it is up to the user/developer to store an property array with the
time points vs. creating a timepoint scaffold for each timestep with the appropriate metadata information
about the occurrences. In the scaffolding case, it is suggested to define an identity map between the dimensions
adjoining the different time points, best with an increasing integer id. Mixing of both types of representation
should be possible.

Storing my regular grid of data points

NeuroHDF node:

Group <SpatioTemporalOrigo>: Metadata: rotation&scale + offset (identity)
 Group <Grid/regular>: Metadata: affine transformation
 Dataset <data>

 Group <timeslices>
 Dataset <t0>
 Dataset <t1>
 ...

 or

 Group <slice_t0>
 Dataset <data>
 Group <slice_t1>
 Dataset <data>

A distinction has to be made between the spatial datastructure that changes over time
vs. the fields defined over the fixed spatial datastructures that change over time.

Outdated ideas

	Hierarchical Layout: Global Metadata

	The Region

	Cookbook - Spatio-Temporal datasets

	Cookbook - Generic datasets

The Region

We represent the unifying concept of a 3D spatial reference frame in NeuroHDF as a Region. A Region is the container
for spatio-temporal datasets and is mapped to a HDF Group node with Region-based metadata.

NeuroHDF node for a Region:

Group["My Region Name"]
.attrs["type"] = "Region"

Group["transform"] : specifies a complex transformation data type
--or--
.attrs["affine"] -> array, shape (4,4) for affine transformation matrix
.attrs["origin_info"] = {
 "name" : "anterior commisure",
 "ref" : "UMLSCUI:C0152335"
}
.attrs["axes_info"] = {
 0 : { "positive" : {"name" : "right", "ref" : "http://purl.obolibrary.org/obo/BSPO_0000007"},
 "negative" : {"name" : "left", "ref" : "http://purl.obolibrary.org/obo/BSPO_0000000"}
 },
 1 : { "positive" : {"name" : "anterior", "ref" : "http://purl.obolibrary.org/obo/BSPO_0000055"},
 "negative" : {"name" : "posterior", "ref" : "http://purl.obolibrary.org/obo/BSPO_0000025"}
 },
 2 : { "positive" : {"name" : "dorsal", "ref" : "http://purl.obolibrary.org/obo/BSPO_0000063"},
 "negative" : {"name" : "ventral", "ref" : "http://purl.obolibrary.org/obo/BSPO_0000068"}
 }
}
.attrs["axes_units"] = {
 0 : {"name" : "x", "unit" : {"name": "mm", "ref" : "http://purl.obolibrary.org/obo/UO_0000016"} },
 1 : {"name" : "y", "unit" : {"name": "mm", "ref" : "http://purl.obolibrary.org/obo/UO_0000016"} },
 2 : {"name" : "z", "unit" : {"name": "mm", "ref" : "http://purl.obolibrary.org/obo/UO_0000016"} },
}

now, the datasets ...

 Group["My regular dataset"] ...
 Group["3D Skeletons"] ...
 ...

A Region contains spatio-temporal datasets that are spatially transformed relative to the local coordinate system
defined by the Region.

The datasets are either regular or irregular:

[image: old/_static/region.png]
We need to establish a basic convention for a global coordinate system, defining the axes order,
naming convention and orientation, to be able to interpret the affine transformation associated with each Region:

	first spatial direction, usually named x

	second spatial direction, usually named y

	third spatial direction, usually named z

Each Region is spatially embedded with an affine transformation from its parent coordinate system to its own (local)
coordinate system. Because the root Region in the hierarchy has no parent Region, the parent coordinate system is
defined by convention as a Left-Hand-Coordinate system, where the first spatial direction is to the right (x),
the second spatial direction is upwards (y) and the third spatial direction is forward (z). We call this global
coordinate system root coordinate system in the following.

The root Region node in the NeuroHDF hierarchy contains an affine transformation that might reorder
the convention root coordinate system. Note that the semantics given to the coordinate axes (their label) applied
to the coordinate axes AFTER the affine transformation from its parent coordinate system.

We use the OBO Spatial Ontology [http://obofoundry.org/cgi-bin/detail.cgi?id=spatial] as identifiers to complement
the human-readable string identifiers denoting axes interpretation.

The affine transformation not only specifies the orientation of the axes, but also the location of origin. This corresponds
to the translation (the translational part of the affine) of the origin from the root-convention coordinate system to the Region
origin. Similarly, we want to know the interpretation of the location of the origin in the Region coordinate system, such as
the anatomically identified
location in a template atlas. Often, particular neuroanatomical landmarks are used to define the origin. Optimally, they
should be very stable and recognizable across individuals. For instance, in the Waxholm space, origin is defined at
Bregma [http://en.wikipedia.org/wiki/Bregm]
which is the anatomical point on the skull at which the coronal suture is intersected perpendicularly by the sagittal suture.

Furthermore, the metric unit for unity of each spatial direction is defined. We use the
OBO Units of measurements Ontology [http://www.obofoundry.org/cgi-bin/detail.cgi?id=unit]
where “milimeter” is identified with “UO:0000016”.

An optional metadata field specifies an axis-aligned bounding box by two points, where the axes are aligned to the
axes of the Region coordinate system. This basically defines the maximal spatial extent of the Region, but it
is not guaranteed to be correct. As we will see, Regions can contain other Regions, but also datasets. These
datasets can change over time, thus changing in its spatial configuration over time. The bounding-box would then
either denote the maximum bounding box at the first time frame, or alternatively be the maximum bounding box
across all time frames.

Individual components of the affine transformation can be extracted [https://github.com/matthew-brett/transforms3d/blob/master/transforms3d/affines.py].

See section Cookbook - Spatio-Temporal datasets for details on the dataset representation.

Hierarchical Layout: Global Metadata

A HDF5 file consist of a tree with group and dataset nodes. Each node can have attributes as key-value pairs.
Please refer to the h5py documentation [http://code.google.com/p/h5py/] for an introduction to the concepts
and manipulation of HDF5 files.

In the following, we describe the way data is structured and laid-out as a NeuroHDF file using h5py. We make here
a proposal for a basic layout and core attributes, that can be customized.

First, we create a writable NeuroHDF file:

import h5py
myfile = h5py.File('firstfile.neurohdf')

We need to ensure that the NeuroHDF can be validated in some well-defined sense.
Therefore, we include metadata as XML instances derived from an XML schema, stored
as one-dimensional byte arrays.

We define a metadata subgroup from the Root node:

Group["/"]

 Group["metadata"]
 .attrs["type"] = "XML" (or JSON, ...)
 .attrs["schemaNamespace"] : Schema XML namespace identifier
 .attrs["schemaLocation"] : URL to XSD file
 Dataset["data"] : byte array, shape (N,1) storing the XML document

For instance, we use the Dublin Core Metadata Element [http://dublincore.org/documents/dces/].
The Datadryad project [http://datadryad.org] is uses this convention for
metadata annotation.

In NeuroHDF, two classes of datasets are defined: a) spatio-temporal datasets
mapped to a spatial reference system, and b) generic datasets with data schema as metadata.

Whenever referencing Open Biological and Biomedical Ontologies [http://obofoundry.org/]
terms, we use the standardized PURL URI [http://www.obofoundry.org/id-policy.shtml] to refer to concepts.

We first discuss the The Region, which is the unifying reference system for spatio-temporal datasets.

NeuroHDF Standard

A wide variety of large datasets in neuroscience can
be organized and managed using the Hierarchical Data Format HDF5.

NeuroHDF puts forward a data layout convention on how to flexibly store
these irregular and regular datasets.

We need to import NumPy and H5Py

import numpy as np
import h5py
from contextlib import closing

The validate_neurohdf function expresses the NeuroHDF specification
programatically.

def validate_neurohdf(neurohdf):

 if not 'neurohdf_version' in neurohdf.attrs:
 raise Execption("No 'neurohdf_version' attribute specified in root node")

 a,b = neurohdf.attrs['neurohdf_version'].split('.')
 if not(int(a) >= 0 and int(b) >= 0):
 raise Exception('NeuroHDF version %s can not be validated')

 for name,group in neurohdf.iteritems():
 if not 'node_type' in group.attrs:
 raise Exception("Missing 'node_type' attribute in group '{0}'".format(name))

 if group.attrs['node_type'] == 'regular_dataset':
 if not 'dataset' in group.keys():
 raise Exception("Missing 'dataset' for regular dataset group '{0}'".format(name))

 # TODO: what are the minimal, mandatory attributes for each axis?

 elif group.attrs['node_type'] == 'irregular_dataset':
 if not 'vertices' in group.keys():
 raise Exception("Missing 'vertices' group for irregular dataset group '{0}'".format(name))
 if not 'connectivity' in group.keys():
 raise Exception("Missing 'connectivity' group for irregular dataset group'{0}'".format(name))
 # First axis dimension must be equal for all contained datasets
 for value in ['vertices', 'connectivity']:
 N=[]
 for dataset_name, dataset in group[value].iteritems():
 N.append(dataset.value.shape[0])
 if not len(set(N)) == 1:
 raise Exception("First axis dimension not equal all" + \
 " datasets in '{0}' group for irregular dataset group '{1}'".format(value, name))

 else:
 raise Exception("Wrong 'node_type' for group '{0}'".format(name))

NeuroHDF can be validated

with closing(h5py.File('/tmp/test.hdf', 'r')) as neurohdf:
 validate_neurohdf(neurohdf)

Creating a valid NeuroHDF

We now create a valid NeuroHDF containing a irregular and a regular dataset

neurohdf = h5py.File('/tmp/test.hdf', 'w')
neurohdf.attrs['neurohdf_version'] = '0.1'

An irregular dataset has two subgroups for the vertices and
their connectivity. Each subgroup contains datasets expressing
attributes on the vertices or on their topology. The first dimension
of the respective datasets has to match.

tgroup = neurohdf.create_group('MyIrregularDataset')
tgroup.attrs['node_type'] = 'irregular_dataset'
vert = tgroup.create_group("vertices")
conn = tgroup.create_group("connectivity")
vert_id = vert.create_dataset('id', data=np.array(range(1,11), dtype = np.uint8))
vert_location = vert.create_dataset('location', data=np.random.rand(10, 3))
conn_edge = conn.create_dataset('edge', data=np.random.random_integers(1,10, (5,2)))
conn_id = conn.create_dataset('id', data=np.array(range(1,6), dtype = np.uint8))

A regular dataset is a pure N dimensional homogeneous array.
Metadata attributes specify information on the axes. The metadata
subgroup stores for instance axes-related metadata.

rgroup = neurohdf.create_group('RegularDataset')
rgroup.attrs['node_type'] = 'regular_dataset'

Metadata group to store e.g. axes arrays
meta = rgroup.create_group("metadata")
meta.create_dataset("sectionindex", data=np.array([5,6,7,9,10],dtype=np.uint8))

data = rgroup.create_dataset("dataset", data=np.random.rand(2, 5, 5, 5, 3))

data.attrs['axis0__label'] = 'time'
data.attrs['axis0__desc'] = 'The first axis represent the temporal evolution'
data.attrs['axis0__unit_label'] = 'miliseconds'
data.attrs['axis0__unit_xref'] = 'PURL:UO:0000028'
data.attrs['axis0__interval'] = 0.125 # a regular spacing between elements

data.attrs['axis1__label'] = 'x axis'
data.attrs['axis1__unit_label'] = 'meter'
data.attrs['axis1__unit_xref'] = 'UO:0000008'
data.attrs['axis1__interval'] = 1.0

data.attrs['axis2__label'] = 'y axis'
data.attrs['axis2__unit_label'] = 'meter'
data.attrs['axis2__unit_xref'] = 'UO:0000008'
data.attrs['axis2__interval'] = 1.0

data.attrs['axis3__label'] = 'z axis'
data.attrs['axis3__unit_label'] = 'meter'
data.attrs['axis3__unit_xref'] = 'UO:0000008'

We can also store a label for each axes index using a reference to a
dataset stored in the metadata subgroup.

data.attrs['axis3__element_array'] = REF['/metadata/sectionindex']

data.attrs['axis4__label'] = 'channel'
data.attrs['axis4__desc'] = 'E.g. the image consist of RGB channels'
data.attrs['axis4__unit_label'] = 'categorial' # ?

neurohdf.close()

Application to neuroscience datasets

A example gallery for storage of a variety of neuroscientific datatypes in
NeuroHDF.

Single neuron morphology as skeleton, i.e. as a tree embedded in 3d space.
This datatype can be represented as an irregular dataset with
properties on the vertices and connectivity, similar to the SWC standard.

neurohdf = h5py.File('/tmp/test.hdf', 'w')
neurohdf.attrs['neurohdf_version'] = '0.1'

mcgroup = neurohdf.create_group("Single Neuron Morphology")
vert = mcgroup.create_group("vertices")
conn = mcgroup.create_group("connectivity")

vert.create_dataset("id", data=np.array([100,200,300], dtype = np.uint8))
vert.create_dataset("location", data=np.random.rand(3, 3).astype(np.float32))
vert_type=vert.create_dataset("type", data=np.array([1,2,3], dtype = np.uint8))
vert_type.attrs['value'] = np.array([
 ['1', 'skeleton'],
 ['2', 'skeleton root'],
 ['3', 'connector']
])

vert.create_dataset("confidence", data=np.array([5,5,5], dtype = np.uint8))
vert_radius=vert.create_dataset("radius", data=np.array([5,4,2], dtype = np.float32))
vert_radius.attrs['unit_label'] = 'um'
vert_radius.attrs['unit_xref'] = 'PURL:...' # reference to ontology for um concept

conn.create_dataset("id", data=np.array([11,12,13], dtype = np.uint8))
conn_type=conn.create_dataset("type", data=np.array([1,2,3], dtype = np.uint8))
conn_type.attrs['value'] = np.array([
 ['1', 'neurite'],
 ['2', 'presynaptic'],
 ['3', 'postsynaptic']
])
other values could be: axonal arbor, dendrite, spine neck, spine head, cell body
neurohdf.close()

A neural circuit skeletonization contains synaptic connectors
and stacked single neuron morphologies. The grouping into neurons
is achieved using an integer property skeletonid on the connectivity.
Similarly, neurons can be grouped as belonging to particular regions.

TBD (To Be Designed)

Reconstructed neuron morphologies represented as a triangular surface mesh.
Again, an irregular dataset suits our needs.

neurohdf = h5py.File('/tmp/test.hdf', 'w')
neurohdf.attrs['neurohdf_version'] = '0.1'

mcgroup = neurohdf.create_group("Neuron Surface Morphology")
vert = mcgroup.create_group("vertices")
conn = mcgroup.create_group("connectivity")

vert.create_dataset("id", data=np.array([100,200,300], dtype = np.uint8))
vert.create_dataset("location", data=np.random.rand(3, 3).astype(np.float32))

conn.create_dataset("id", data=np.array([11], dtype = np.uint8))
conn.create_dataset("faces", data=np.array([[0,1,2]], dtype = np.uint8))

neurohdf.close()

Raw images stacks from microscopy are usually 3,4 or 5 dimensional
(time, x, y, z, channel). Segmentation of these images can be stored
as regular datasets with integer values. See the example for regular
datasets above.

TBD

Physiological recordings are (multichannel) timeseries and can be
stored in a regular dataset.

TBD

A simulation result of a multi-compartmental model consist of
morphology and simulated physiology.

TBD

One can imagine a variety behavioral datasets that can be stored
using regular datasets.

TBD

See also

The full source code of this example is included in the NeuroHDF source distribution (../examples/validate_neurohdf.py).

Metadata

The topic of storing complex metadata associated with the binary data is
involved, and a variety of proposals have been made based on XML or databases.

In the current proposal for NeuroHDF, we refrain from these metadata issues,
and propose to include only a minimal set of metadata fields such as axes
labels and units in a NeuroHDF file.

The development of domain-specific object models can be decoupled from the,
storage of binary data arrays. Such object models can be implemented as an
XML specification or a database schema, and references to data arrays, stored
e.g. in a NeuroHDF file on the file system, can be applied. With this
separation of concerns, individual research communities can come up with
a shared object model of their domain, and standardize formats for data exchange.

By using HDF5 with the NeuroHDF convention as standard format to store
array data, various research task such as large data storage and fast access
for analysis, visualization, modeling or simulation are simplified
through the existence of I/O libraries in all major programming languages
and platforms. Researchers could select the best tool for the task at hand
existing in any software environment.

 _static/comment-close.png

_static/comment.png

_static/plus.png

_static/file.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/region.png
Regular
datas

Irregular
dataset

Global coordinate system
by convention

_static/down.png

_static/minus.png

nav.xhtml

 Table of Contents

 		NeuroHDF documentation

 		Multi-compartment neural circuitry

 		Useful for neuroscience data types

 		Tool supporting this specification

 		N-dimensional, homogeneous arrays

 		Useful for neuroscience data types

 		Tool supporting this specification

 		Example generation

 		Multiscale image datasets

 		Useful for neuroscience data types

 		Tool supporting this specification

 		Example generation

 		Physiology

 		Useful for neuroscience data types

 		Tool supporting this specification

 		Example generation

 		Surfaces

 		Useful for neuroscience data types

 		Tool supporting this specification

 		Example generation

 		Behavioral datasets

 		Simulation

 		Useful for neuroscience data types

 		Tool supporting this specification

 		Example generation

 		Serial section 2D images

 		Useful for neuroscience data types

 		Tool supporting this specification

 		Example generation

 		Evaluation of HDF5

 		Supported Libraries

 		Python libraries

 		Java libraries

 		Matlab

 		R bindings

 		.NET

 		Advantages of using HDF5

 		Possible limitations of HDF5

 		Further reading

 		Biological image formats

 		Neuroimaging formats

 		Visualization formats

 		Microscopy formats and metadata

 		Climate and Forecast formats

 		General

 		Global object model

 		Software tools using HDF5

 		Python

 		Java

 		Matlab

_static/up-pressed.png

_static/comment-bright.png

